Creek Erosion Inventory Methodologies, Data Collection and Management for Municipal Asset Management Programs

MEA Conference, Ottawa, Ontario

Julia Howett, M.Sc.

Amy Nicoll, M.Sc., P.Geo. (Limited)

November 20, 2024

OUTLINE

- Introduction
- Purpose
- Inventory Development
- Scale
- Data Collection Framework
- Resources
- Applications

INTRODUCTION

Creek erosion inventories:

- Identify and evaluate channel erosion risks
- Prioritize sites for remediation using a standardized framework
- Manage both legacy and emerging erosion issues

PURPOSE

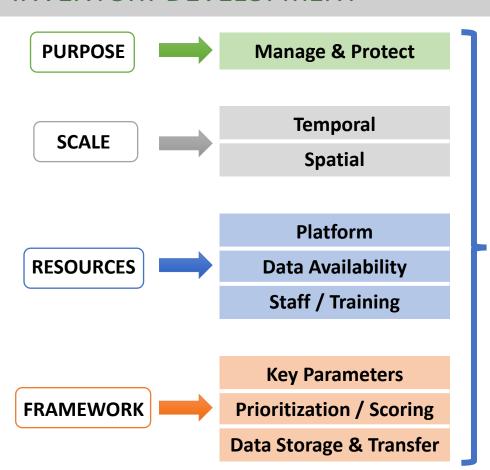
- Sewer infrastructure (water, storm, sanitary)
- Bridges, roads, culverts
- Trails, park infrastructure

PROPERTY

- Public property
- Conservation areas / lands
- Private property*

PUBLIC SAFETY

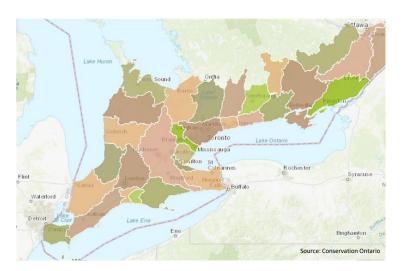
 Potential hazards to public safety associated with erosion hazards


NATURAL ASSETS

- Watercourses
- Wetlands
- Natural heritage features
- 'Sensitive' areas

INVENTORY DEVELOPMENT

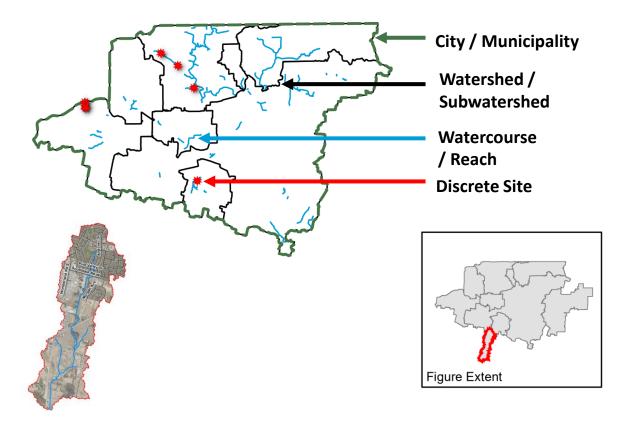
Erosion Site Prioritization

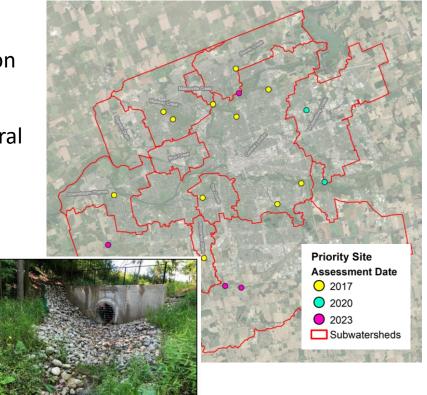

Erosion Site
Prioritization Results
Imminent
High
Medium
Low

Understanding of "state" of watershed; stability indicators, vulnerable areas, etc.

SCALE

- Spatial and temporal scale considerations of inventories
- 'Static' vs. 'dynamic' database
- Future considerations



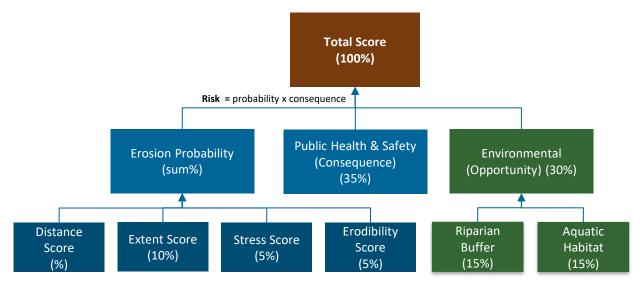

SPATIAL SCALE

TEMPORAL SCALE

- Inventory initiation, frequency and duration
- Seasonal timing
- Consideration of natural channel processes
- Urbanization and infrastructure

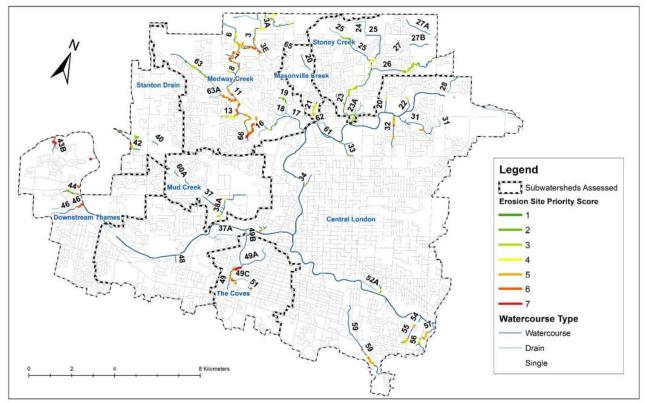
DATA COLLECTION FRAMEWORK

Parameter	Description
Date	Auto-generated ID field
Erosion Feature	Channel bank; valley wall
Position	Left bank; right bank
Length	Length of erosion
Height	Maximum height; average height
Undercutting	Measurements of undercutting
Vegetation Coverage	Bare/exposed, partial vegetation, fully vegetated
Rate of Erosion	Indicators of erosion rate; active, gradual, in-active, relic
Potential Risk	Risk to infrastructure, property, public safety, natural assets
Instability Indicators	Indicators of widening, degradation
Photos	Key photos of erosion site



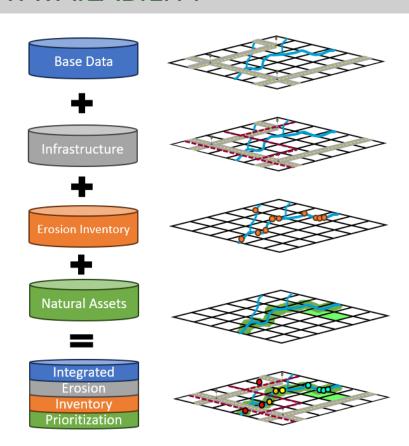
DATA COLLECTION FRAMEWORK

Example Prioritization / Scoring Methodology



- Evaluate hazards as the product of probability and severity
- Methodology is adaptable:
 - Scoring factors (include / exclude / adjust definitions)
 - Weighting of individual factors (%)

DATA COLLECTION FRAMEWORK


Example Erosion Prioritization: London, Ontario

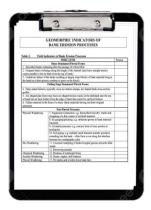
RESOURCES: DATA AVAILABILITY

- Availability of existing 'base' data, infrastructure and natural asset mapping
- Collection of erosion inventory data
- 'Layering' or merging of mapping for prioritization analyses
- Benefits of digital data collection

RESOURCES: STAFF

RESOURCES: PLATFORM

Digital Data Collection


- ✓ Accuracy X Costs / Licenses
- ✓ Scalability X Equipment
- ✓ Workflow X Remote areas
- / Efficiency X Compatibility

'Manual' Data Collection

- ✓ Cost X Efficiently
- / Flexibility X Organization
- Additional X Digitization observations X QA/QC

RESOURCES: DATA MANAGEMENT

- Storage
- Database structure
- Comparability
- Transferability

APPLICATIONS

Results Inform Capital Works Planning

Planning Frameworks:

- Master Plans
- Environmental Assessments
- Independent Studies

City Initiatives:

- Stormwater
 Management Studies
- Flooding and Erosion Studies

Asset Management:

- Infrastructure
- Parks & Trails
- Natural Assets
- Fisheries

Amy Nicoll, M.Sc., P.Geo. (Limited)
Fluvial Geomorphologist
anicoll@matrix-solutions.com

Julia Howett, M.Sc.
Fluvial Geomorphology Specialist
jhowett@matrix-solutions.com